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Abstract—Graph database query languages feature expressive
yet computationally expensive pattern matching capabilities.
Answering optional query clauses in SPARQL for instance renders
the query evaluation problem immediately PSPACE-complete.
Light-weight graph pattern matching relations, such as simula-
tion, have recently been investigated as promising alternatives to
more expensive query mechanisms like, e. g., computing subgraph
isomorphism. Still, pattern matching alone lacks expressive query
capabilities: graph patterns may be combined by usual inner
joins. However, including more sophisticated operators is in-
evitable to make solutions more useful for emerging applications.
In this paper we bridge this gap by introducing a new dual
simulation process operating on SPARQL queries. In addition
to supporting the full syntactic structure of SPARQL queries,
it features polynomial-time pattern matching to compute an
overapproximation of the query results. Moreover, to achieve
running times competing with state-of-the-art database systems,
we develop a novel algorithmic solution to dual simulation graph
pattern matching, based on a system of inequalities that allows
for several optimization heuristics. Finally, we achieve soundness
of our process for SPARQL queries including UNION, AND and
OPTIONAL operators not restricted to well-designed patterns.
Our experiments on synthetic and real-world graph data promise
a clear gain for graph database systems when incorporating the
new dual simulation techniques.

Index Terms—graph databases, query processing, graph sim-
ulation, SPARQL

I. INTRODUCTION

Extensive knowledge graphs are commonplace backbones in
today’s information infrastructures. Therefore, scalable query
processing in graph databases has sparked a vivid interest in
the database community. Already at an early stage specialized
graph query languages such as SPARQL, the W3C recommen-
dation for querying RDF data by SQL-like expressions [28],
have been designed. Such languages provide easy to use yet
expressive query capabilities on graph structures, but need to
severely break down structural complexity to allow for fast
query evaluation. Indeed, the evaluation of complex graph
patterns is computationally expensive and thus a variety of
implementational avenues have been proposed [5], [9], [24].

At the heart of SPARQL, basic graph patterns (BGPs) form
the syntactically least complex queries. BGPs are simply
graphs, and their result sets contain all graph-homomorphic
matches from the graph database instance. Consider query
(X1), retrieving all persons (cf. variable ?director) who
directed at least one movie (?movie) and at some point
collaborated with another person (?coworker):

SELECT ∗ WHERE {
?director directed ?movie .
?director worked_with ?coworker . }

(X1)

(X1) consists of two triple patterns. The first re-
quires a directed link between assignments to vari-
ables ?director and ?movie while the second asks for
?director to be in a worked_with relationship with an
object matching ?coworker. An evaluation of (X1) w. r. t.
the database instance depicted in Fig. 1(a) retrieves the two
subgraphs in bold print, including nodes B. De Palma or
G. Hamilton assigned to variable ?director.

Besides full-fledged graph query languages simpler graph
pattern matching for diverse querying tasks raised a growing
interest in the database community [8], [10]–[13], [16], [18],
[23], [30]. Some of these applications employ a form of
simulation graph pattern matching, showing computational
advantages over homomorphic and isomorphic matching. Yet,
an in-depth analysis of the approaches incorporating simula-
tion [8], [18], [23], [30] reveals two shortcomings:

(1) The algorithms presented are not specifically designed for
graph database querying tasks, in contrast to state-of-the-
art graph database management systems like Virtuoso [9].
Thus, when it comes to performance evaluation of the
simulation algorithms, they are only compared to subgraph
isomorphism algorithms. But as their claimed application
area is indeed database querying, it would only be fair to
test these algorithms against established database systems,
too (note that all isomorphism queries can be easily
translated to SPARQL queries with conjunction and filter
conditions [20]). While performance evaluations of graph
pattern matching papers generally show good evaluation
times, based on our experience we have reason to believe
that Virtuoso and other graph database systems would
still perform much better. Therefore, we have to find
out whether we can algorithmically catch up with graph
database systems, since general simulation queries may
not be easily expressed in SPARQL [20].

(2) What all the classical graph pattern matching problems
have in common, is that the input is given as a graph, i. e.,
there is no possibility of building more complex patterns
as by graph query languages. Hence, we have to study
whether there are major boundaries for an incorporation
of graph query operators into the pattern matching process.

Towards (1) we investigate dual simulation, a version of sim-
ulation specifically developed for the graph data setting [18].
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Fig. 1: Representation of (a) an Example Graph Database and (b) a Graph Pattern for (X1)

The algorithm presented by Ma et al. follows a single passive
strategy that checks whether the definition of dual simulation is
met resulting in a huge amount of iterations and influencing the
overall runtime (cf. Table II). Based on a novel characterization
of dual simulation in Sect. III, we develop a more flexible
algorithmic solution to the dual simulation problem: the fix-
point of a system of inequalities (SOI) allows for fast dual
simulation processing in the graph query setting. We provide
formal proof of the correctness of our algorithm as well as
experimental justification for the performance improvements
brought by our solution.

Regarding (2), we also contribute a conservative extension
of dual simulation to work with typical graph query operators,
exemplarily taken from SPARQL (cf. Sect. IV). We obtain
an overapproximation of the actual SPARQL query results
for further inspection, filtering, or actual query processing,
depending on the specific application. These extensions are
complete in that none of the matches under the SPARQL
semantics is neglected by dual simulation. In particular, this
allows for sound pruning and in any case makes it safe to
use the result for further query processing. Our algorithmic
framework remains efficient, since all the features we need to
add are directly implementable within the SOI solution and
do not influence the overall polynomial-time complexity.

In Sect. V, we perform extensive experiments on two large-
scale databases. First, we provide evidence of the runtime
improvements over the algorithm by Ma et al. due to our
solution. Second, we step into one possible application, namely
per-query database pruning. More than 95% irrelevant triples
are disqualified by dual simulation processing for all evaluated
queries, which is the reason for improved query evaluation
times compared to two state-of-the-art graph databases Virtu-
oso [9] and RDFox [24]. Moreover, we observe that our dual
simulation process may directly be incorporated as a pruning
preprocessing step in RDFox. In Sect. VI, we elaborate on
related work while we draw a conclusion in Sect. VII. Most
proofs of the formal results had to be omitted due to space
limitations. However, they can be found in the supplementary
report [19] accompanying this paper.

II. GRAPHS, DATA AND MATCHING

By graphs we refer to edge-labeled directed graphs with
a finite set of nodes V , a finite label alphabet Σ, and a
directed labeled edge relation E ⊆ V × Σ× V . A graph is a

triple G = (V,Σ, E) of the aforementioned components. As
exemplified in Fig. 1, nodes are depicted as rounded-corner
rectangles (with its identifier/name as centered label) while
edges are represented by directed arrows (with associated
labels next to the arrow) between nodes. We often identify
the components of of graphs Gi by Vi and Ei (i ∈ N). As
a matter of simplicity we assume all graphs to be labeled
over a fixed alphabet Σ. For every label a ∈ Σ, we associate
with graphs G two adjacency maps, a forward map FaG and
a backward map Ba

G of G. Both mappings associate a subset
of nodes with each node v ∈ V , in case of forward maps, the
set of successor nodes, and in case of backward maps, the set
of predecessor nodes of v, i. e., FaG(v) := {w | (v, a, w) ∈ E}
and Ba

G(v) := {u | (u, a, v) ∈ E}.
Graph databases are graphs which associate database ob-

jects, e. g., entities and literals, with each other via predicates.
To distinguish graph databases from ordinary graphs we denote
them by DB = (ODB,Σ, EDB), where ODB is the set of
database objects and elements of EDB are sometimes called
links. We refrain from making the data model more concrete,
since all upcoming notions and techniques are independent of
any further restrictions, as e. g., given by RDF’s requirement
of having literals only as edge targets.

A dual simulation [18] between two graphs G1, G2 is a
binary relation S ⊆ V1 × V2 such that for each pair of nodes
(v1, v2) ∈ S, all incoming and outgoing edges of v1 are also
featured by v2 and the adjacent nodes of v1 and v2, ordered
in pairs, belong to S. For a dual simulation S, (v1, v2) ∈ S
means that v2 dual simulates v1. As an example consider the
graphs depicted in Fig. 2(a) and (b) as G1 and G2. A dual
simulation relates the nodes with the same label, e. g., place
in G2 dual simulates node place in G1, and both nodes
director1 and director2 in G1 relate to director in
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Fig. 2: Two Graph Patterns



TABLE I: Summary of Symbols

G = (V,Σ, E) edge-labeled directed graph
Fa
G, Ba

G forward/backward map for label a in G
DB = (ODB,Σ, EDB) graph database

χS : V1 → 2V2 characteristic function for relation S ⊆ V1 × V2
Q, Q1, Q2 SPARQL queries
JQKDB set of matches due to SPARQL semantics
µ : vars(Q)→ ODB match to query Q in DB
µ1 
 µ2 compatibility predicate between µ1 and µ2

E = (Var, Eq) system of inequalities

G2, as in{
(place, place), (director1, director),
(director2, director), (movie, movie),
(coworker, coworker)

}
(1)

Node director2 features two outgoing edges, one labeled
born_in to node place, the other labeled directed to
movie. Node director in G2 dual simulates director2,
since it has an outgoing edge with label born_in to node
place, and place in G2 dual simulates place in G1.
The same argument holds for node movie. By following
through the argumentation for every pair of nodes in (1), it
can be shown that G2 indeed dual simulates G1 under the
indicated dual simulation (1). Observe that a single node, e. g.,
director, may dual simulate more than one node.

Definition 1 (Dual Simulation [18]) Let Gi = (Vi,Σ, Ei)
(i = 1, 2) be two graphs. A relation S ⊆ V1 × V2 is a dual
simulation between G1 and G2 iff for each (v1, v2) ∈ S,

(i) (v1, a, w1) ∈ E1 implies ∃w2 ∈ V2 : (v2, a, w2) ∈ E2

and (w1, w2) ∈ S,
(ii) (u1, a, v1) ∈ E1 implies ∃u2 ∈ V2 : (u2, a, v2) ∈ E2

and (u1, u2) ∈ S.
We say that G2 dual simulates G1 iff there is a non-empty
dual simulation between G1 and G2. �

Note that the trivial dual simulation S = ∅ would certify that
any two graphs are dual simulating each other. In a graph
query setting we call G1 pattern graph and G2 is the graph
database. Reconsider the introductory example query (X1).
The graph in Fig. 2(b) dual simulates the graph representation
of (X1) in Fig. 1(b). A dual simulation is realized by ignoring
node place. Hence, not every node of the graph database has
to participate in a dual simulation relation. Furthermore, the
graph in Fig. 2(a) neither dual simulates nor is dual simulated
by the graph in Fig. 1(b). Regarding the graph database
depicted in Fig. 1(a) and the graph representation of (X1) in
Fig. 1(b), dual simulation (2) turns out to be particularly useful
in the upcoming sections.{

(director, B. De Palma), (director, G. Hamilton),
(coworker, D. Koepp), (coworker, H. Saltzman),
(movie, Mission: Impossible), (movie, Goldfinger)

}
(2)

It comprises exactly the nodes of the two subgraphs from
the result set of (X1). Instead of considering the full graph
database (i. e., Fig. 1(a)) we would ignore all graph database
nodes but those mentioned by dual simulation (2). Computing

this dual simulation is possible in PTIME [18], as opposed to
SPARQL query evaluation being PSPACE-complete [26], [29].
How to perform this computation fast is subject to the next
section. We apply dual simulation principles to SPARQL for
query processing in Sect. IV.

III. A PERSPECTIVE ON DUAL SIMULATION

At the end of the last section we have seen a dual simulation
between a graph representation of a SPARQL query (BGP (X1))
and a graph database (Fig. 1(a)), covering all nodes relevant for
computing the result set of (X1). In Sect. IV we show that the
existence of such a dual simulation is not coincidental, since
every match for SPARQL queries like (X1) is contained in a
maximal dual simulation (cf. Theorem 1). A dual simulation S
is maximal iff there is no dual simulation S′ such that S ⊂ S′.
Fortunately, there is exactly one such maximal dual simulation
between any two graphs, the largest dual simulation.

Proposition 1 (Proposition 2.1 [18]) For any two graphs G1

and G2, there is a unique largest dual simulation Smax

between G1 and G2, i. e., for any dual simulation S between
G1 and G2, S ⊆ Smax.

The proof exploits the fact that, whenever we have two dual
simulations S1 and S2 between the graphs, their union S1∪S2

is a dual simulation. Incorporating dual simulation in graph
pattern matching or SPARQL query processing amounts to
computing the largest dual simulation between an appropriate
representation of the query and the graph database. All graph
database nodes captured by the largest dual simulation are
relevant for answering the query.

Computing the largest (dual) simulation is the algorithmic
basis for solving the graph (dual) simulation problem, i. e.,
given two graphs G1 and G2, does G2 (dual) simulate G1.
To the best of our knowledge, all published algorithms for
this task [15], [18] work on the same principles. Starting with
the largest possible relation between the two node sets, the
algorithms incrementally disqualify pairs of nodes violating
Def. 1. The procedures are guaranteed to terminate when no
pair of nodes can be disqualified anymore. Although the stan-
dard algorithms share an O(|V2|3) data (runtime) complexity,
we observed that these algorithms only allow for the naive
evaluation strategy described above, which have originally
been invented for comparing graphs of unknown sizes with
each other. The aforementioned data complexity follows from
generalizing the existing algorithms [15] and [18] to edge-
labeled graphs (cf. our supplementary report [19] for a detailed
derivation). This inflexibility generates high query running
times that would easily be outperformed by state-of-the-art
query evaluation, e. g., by Virtuoso (cf. Sect. V).

Subsequently, we develop a novel solution which computes
the largest dual simulation and exploits run-time analytics to
dynamically adapt evaluation strategies. Key to our solution is
the reformulation of the algorithm as a system of inequalities
which allows for two dynamically interchangeable evaluation
strategies. Although the worst-case complexity of our solution
remains unaltered (cf. Sect. III-C), compared to the existing



algorithms, we gain a degree of freedom allowing for a sys-
tematic reduction of iterations to eventually reach the largest
dual simulation (cf. Sect. III-C). As we show in Sect. V the
new procedure shows extremely low computation times, a
solid basis for query processing. Our solution is engineered
in three steps. First, we define a set of inequalities equivalent
to the coinductive definition of dual simulation in Def. 1. We
further show how to derive a fast implementation based on
bit-vectors and bit-matrices. Last, we provide a discussion on
optimizations realized in our software prototype1.

A. Groundwork

Any binary relation R ⊆ A × B, over sets A and B, has
a characteristic function χR : A → 2B with χR(a) := {b ∈
B | (a, b) ∈ R}. For a dual simulation S between graphs G1

and G2, χS associates with each node v ∈ V1 a set of dual
simulating nodes χS(v) ⊆ V2. Consider an edge (v, a, w) of
G1 and node v′ ∈ χS(v). If S is a dual simulation, then for
χS we derive

∃w′ : (v′, a, w′) ∈ E2 and w′ ∈ χS(w). (3)

The problem with (3) is that there may be many w′ qualifying
for (v′, a, w′) ∈ E2 but w′ /∈ χS(w). We pursue to have a
single operation allowing us to quickly verify the existence of
w′. Therefore, recall that for any graph, here graph database
G2, we have a forward adjacency map FaG2

for each label a ∈
Σ (cf. Sect. II). By exploiting these maps we prove existence
of a w′ in (3) simply by intersecting the row of v′ in FaG2

and
the nodes simulating w, i. e.,

FaG2
(v′) ∩ χS(w) 6= ∅. (4)

(4) still only checks for one pair of nodes (v, v′). Combining
this equation for all v′ ∈ χS(v) yields∧

v′∈χS(v) FaG2
(v′) ∩ χS(w) 6= ∅. (5)

The same encoding applies to Def. 1(ii), this time using the
backward map,∧

w′∈χS(w) Ba
G2

(w′) ∩ χS(v) 6= ∅. (6)

The combination of both equations (5) and (6) yields two
inequalities equivalent to the definition of dual simulation and
the key for our efficient implementation.

Lemma 1 Let G1 = (V1,Σ, E1) and G2 = (V2,Σ, E2) be
graphs with (v, a, w) ∈ E1. For a binary relation S ⊆ V1×V2
satisfying (5) and (6), it holds that (7) is satisfied.

(i) χS(w) ⊆
⋃
v′∈χS(v) F

a
G2

(v′) and
(ii) χS(v) ⊆

⋃
w′∈χS(w) B

a
G2

(w′)
(7)

PROOF: W. l. o. g., we show inequality (i) only. Inequality
(ii) is completely analogous. Towards a contradiction assume
χS(w) 6⊆

⋃
v′∈χS(v) F

a
G2

(v′). Hence, there is a w′ ∈ χS(w)
such that for each v′ ∈ χS(v), w′ /∈ FaG2

(v′), i. e., (v′, a, w′) /∈
E2. As a consequence, χS(v) and Ba

G2
(w′) are disjoint for

1available at GitHub https://github.com/ifis-tu-bs/sparqlSim

each v′ ∈ χS(v), contradicting our assumption that (6) holds.
Therefore, such a w′ cannot exist, allowing to conclude that
χS(w) ⊆

⋃
v′∈χS(v) F

a
G2

(v′). �

Phrased differently, dual simulations S satisfy (7) for every
edge (v, a, w) of G1. Lemma 1 reveals an important ob-
servation that, to the best of our knowledge, has not been
published so far: The reason why (7) holds is that part (ii)
prevents part (i) from getting ill-formed and vice versa. The
fast algorithm we obtain here is a consequence of the duality
in dual simulation. Conversely, every solution to (7) is a dual
simulation.

Proposition 2 Let G1 and G2 be graphs. S ⊆ V1 × V2 is
a dual simulation between G1 and G2 iff for every edge
(v, a, w) ∈ E1, (7) holds for S.

The proof builds on the principles of Lemma 1 and can
be found in our report [19]. Hence, (7) characterizes dual
simulations, and we can use it to compute the largest dual
simulation. The algorithm works as follows. We begin with
S0 := V1 × V2. For each edge of G1, check whether (7)
is satisfied by S0. Assume (7)(i) fails for an edge (v, a, w).
Then, S1 is computed by χS1

(u) := χS0
(u) for u 6= w and

χS1
(w) := χS0

(w) ∩
⋃
v′∈χS0

(v) F
a
G2

(v′). We get rid of all
non-simulating nodes of w relative to S0 in a single iteration.
This procedure is repeated for S1, S2, . . . until we reach an
Sk satisfying (7) for every edge of G1.

Even though we maintain the PTIME nature of other al-
gorithms (cf. Sect. III-C), we still miss a way to quickly
compute

⋃
v′∈χS(v) F

a
G2

(v′) and access χS(v). Therefore, the
forthcoming implementation works with bit-representations of
χS(v) and FaG2

,Ba
G2

, paving the way for optimization in time-
and space-consumption (e. g., [5]). In that setting we derive
a system of inequalities (SOI) from Prop. 2, for which dual
simulations S serve as valid assignments.

B. Engineering

Our goal is to obtain the facilities for achieving a fast
implementation of dual simulation processing. Recall that we
need to compute the largest dual simulation and we do this by
a system of inequalities according to (7). The challenge is to
find a way to quickly compute the unions⋃

v′∈χS(v) F
a
G2

(v′) and
⋃
w′∈χS(w) B

a
G2

(w′). (8)

Combinations of vectors and matrices, especially when en-
coding information only bit-wise, promise fast computations.
Hence, we interpret the adjacency maps of G2 as adjacency
bit matrices. Reconsider the graph in Fig. 2(a). For label
born_in, this graph provides two adjacency matrices,

Fborn_inFig. 2(a) =


0 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 and Bborn_in
Fig. 2(a) =


0 1 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

Here, we assume the set of nodes of graphs to be ordered
by some pre-defined index, e. g., v1 = place, v2 =
director1, v3 = director2, v4 = coworker, and

https://github.com/ifis-tu-bs/sparqlSim


v5 = movie. Also, χS can be seen as a matrix with k = |V1|
rows, one for each node of pattern graph G1, and n = |V2|
columns. Specifically, for a dual simulation S a 1 in position
(i, j) means that the ith node of the pattern graph is simulated
by the jth node of the graph database. For ease of presentation,
the pattern graph G1 does not have an indexed node set.
Consequently, for node v of the pattern graph and j ≤ n, we
access the jth component of v’s row by χS(v, j). By χS(v) we
get v’s row vector sliced from matrix χS . The desired unions
(8) are now achieved by bit-matrix multiplications2 (symbol
×b),

χS(v)×b FaG2
and χS(w)×b Ba

G2
. (9)

The result of the multiplication is the reachable
nodes via a-labeled (forward) edges from any
simulating node of v. For instance, assume that
χS(director) = χS(place) = (1, 1, 1, 1, 1). Then,
for edge (director,born_in,place):

χS(director) ×b Fborn_inFig. 2(a) = (1, 0, 0, 0, 0) = r1

χS(place) ×b Bborn_in
Fig. 2(a) = (0, 1, 1, 0, 0) = r2.

Hence, r1 reveals that only node place is reachable via
forward edges labeled born_in. Conversely, by born_in-
labeled backward edges we reach director1 as well
as director2. The results are used to update a given
relation S, according to (7). In the example above, r2
shows that χS(director) 6= (1, 1, 1, 1, 1), since the only
reachable nodes are director1 and director2. Thus,
χS(director) = (1, 1, 1, 1, 1) 6≤ (0, 1, 1, 0, 0) = r2, but
according to Prop. 2, a dual simulation S satisfies (7), now
possible to formulate by bit-matrix operations for edges
(v, a, w) ∈ EG1

,

χS(w) ≤ χS(v) ×b FaG2
and

χS(v) ≤ χS(w) ×b Ba
G2

. (10)

After observing the wrong value of χS(director)
we update relation S to S′ by χS′(director) :=
χS(director)∧r2 (component-wise conjunction of the two
vectors). This enables us to give an algorithm for the dual
simulation problem between two graphs G1 and G2 as a
solution of the system of inequalities E = (Var,Eq), where
every node v of the graph pattern is a variable, i. e., Var := V1,
and Eq contains for each pattern edge (v, a, w) ∈ E1, the
following equations:

w ≤ v ×b FaG2
and v ≤ w ×b Ba

G2
. (11)

Fig. 3 shows the SOI for computing dual simulations for the
graphs in Fig. 2(a) and (b). Assignments to the variables
v, w ∈ Var are relations S ⊆ V1 × V2. The algorithm
computing the largest dual simulation between G1 and G2

proceeds as follows.
1) Set S0 := V1 × V2 and all inequalities in Eq unstable.

2For vector v and matrix A, v×b A = w where w(j) = 1 iff there is an
i such that v(i) = 1 and A(i, j) = 1.

place ≤ director1×b Fborn_inFig. 2(b)

place ≤ director2×b Fborn_inFig. 2(b)

director1 ≤ place×b Bborn_in
Fig. 2(b)

director2 ≤ place×b Bborn_in
Fig. 2(b)

coworker ≤ director1×b Fworked_withFig. 2(b)

director1 ≤ coworker×b Bworked_with
Fig. 2(b)

movie ≤ director2×b FdirectedFig. 2(b)

director2 ≤ movie×b Bdirected
Fig. 2(b)

Fig. 3: System of Inequalities Characterizing Largest Dual
Simulation between Fig. 2(a) and (b)

2) Let Si be the current candidate relation. Pick any unstable
inequality ε ∈ Eq

a) If Si is valid for ε, set ε stable and continue with (2).
b) If Si is invalid for inequality ε = v ≤ w ×b A (for
A ∈ {FaG2

,Ba
G2
| a ∈ Σ}), then χSi

(w)×b A = r and
χS(v) 6≤ r. Update Si to Si+1 such that

χSi+1(x) :=

{
χSi

(x) ∧ r if x = v and
χSi(x) otherwise.

Furthermore, every inequality y ≤ v×A ∈ Eq are reset
to unstable. Mark ε stable and continue with (2).

The initialization step of S0 can also be expressed in terms of
inequalities, in that for every pattern node v, we add (12) to
the set of inequalities Eq.

v ≤ 1 (12)

1 is the vector containing a 1 in every component. The dual
simulation given by (1) is the largest solution to the SOI in
Fig. 3, thus it constitutes the largest dual simulation.

C. Complexity and Optimization

Initializing S0 takes time O(|V1| · |V2|) in a naive im-
plementation. We execute step 2) at most |V1| · |V2| times,
since there are |V1| pattern nodes for which at most |V2|
data nodes can be disqualified. Let ε = v ≤ w ×b A
be in Eq and Si the current candidate relation. Computing
r = χSi

(w)×bA is in O(|V2|2) time. By further regarding the
intersection χSi

(v)∧ r, we obtain an overall time complexity
of O(|V2|2 + |V2|) = O(|V2|2) for updating Si to Si+1 which
validates ε. For every edge in G1 we have two equations in
Eq, i. e., |Eq| = O(|E1|). Thus, assuming pattern G1 and data
graph G2 as input, our algorithm has a combined complexity
of O((|V1| · |V2|) · |E1| · |V2|2). In terms of data complexity
we have a worst-case runtime of O(|V2|3), virtually the same
complexity as of any other dual simulation algorithm (cf. [19]).

Our characterization of dual simulation and its implementa-
tion open up dynamic evaluation strategies for the constructed
SOI. First, the order in which the equations are evaluated has
an impact on the overall runtime. For our experiments, we
have chosen an order that aims at shrinking the simulation as
early as possible, e. g., by preferring inequalities with matrix
components having more empty columns, which indicates
sparsity of the respective matrices. Second, the computation



of r (step 2b of the algorithm) may be performed row-wise or
column-wise. Again, we follow the strategy of fewer iterations,
i. e., in v ≤ w ×b A we choose a row-wise evaluation if and
only if χS(w) has fewer bits set than χS(v). As it turns out
(cf. Sect. V-C) there is not a single heuristic that fits all input
patterns and databases.

Our proof-of-concept implementation keeps G2 in memory
by its adjacency matrices. G1 is stored by its system of
inequalities, including O(|V1|) bit-vectors representing χS .
For every graph pattern G1, it suffices to load those adjacency
matrices that are needed the pattern. Hence, the worst-case
memory consumption is determined by the graph pattern and
by the adjacency matrix requiring the most memory. Note
that due to bit-vector storage techniques, such as gap-length
encoding, the worst memory consumption might not occur
with the label storing the most bits. Combined with the
memory-economical implementation by Atre et al. [4], [5] we
are quite optimistic that our implementation may directly be
used within the preprocessing step of the BitMat tool set. Our
dual simulation processing applied to SPARQL queries yields
decent pruning factors (cf. Sect. V), significantly improving
upon those reported by Atre [4].

IV. DUAL SIMULATION FOR SPARQL

Having clarified the foundational and algorithmic aspects
of dual simulations we now approach an actual query lan-
guage, namely SPARQL. We choose SPARQL for its high-
quality standardization by the W3C [28] and its extensive
formal treatment, e. g., [2], [3], [26], [29]. Subsequently, for
SPARQL’s least complex construct we canonically obtain dual
simulation processing respecting all matches any SPARQL
query processor would find. We further discuss SPARQL’s
join operators. For each query language feature we obtain
a soundness result guaranteeing that the original SPARQL
matches are preserved for further processing.

A. Basic Graph Patterns

As for RDF, triple patterns are first-class citizens of
SPARQL. For the presentation of the upcoming material, we
assume subject and object of a triple t = (s, p, o) to be
variables from an infinite domain of variables V , ranging over
by v, v1, v2, . . .. A variable v1 is usually introduced by a
leading question mark, i. e.,?v1 (cf. (X1)). In formal notation,
however, we drop this syntactic convention and write v1.

Querying a graph database DB = (ODB,Σ, EDB) yields a
set of partial mappings from the set of variables to actual
database objects. For instance, the single triple pattern t =
(v1,population, v2) gives rise to a match identifying v1
with node Saint Join and v2 with 70.063 (cf. Fig. 1(a)).
By vars(t) we denote the set of variables occurring in triple t,
i. e., vars(t) = {v1, v2} for the abovementioned t. A candidate
in DB is a partial function µ : V → ODB. dom(µ) denotes the
set of variables for which candidate µ is defined. A candidate
µ is a match for triple t in DB iff dom(µ) = vars(t) and,
assuming t = (v1, a, v2), (µ(v1), a, µ(v2)) ∈ EDB, abbreviated
by µ(t) ∈ DB.

v

w

knows knows

(a)

p2p1

knows

knows

p3

knows

knows

p4

knows knows

(b)

Fig. 4: (a) Graph Pattern P and (b) Graph Database K, an
example adapted from Ma et al. [18]

We call sets of triple patterns G basic graph patterns
(BGPs). Function vars and thereupon the notion of matches
extend to BGPs by vars(G) =

⋃
t∈G vars(t), and µ is a match

for G iff µ is a match for all triples t ∈ G. The result set
JGKDB for G w. r. t. DB contains all matches for G in DB.
Every BGP G can be seen as a graph G(G) = (VG,Σ,G) by
taking the set of variables occurring in G as set of nodes, i. e.,
VG := {v, w | (v, a, w) ∈ G}. The graph in Fig. 1(b) represents
such a conversion of of query (X1).

For dual simulation processing of a BGP G w. r. t. DB, we
compute the largest dual simulation between G(G) and DB.
This procedure is sound in that every match µ for G in DB
is a dual simulation and therefore must be contained in the
largest dual simulation.

Lemma 2 Let DB be a graph database and G be a BGP.
Each µ ∈ JGKDB is a dual simulation between G(G) and DB.

The reason why Lemma 2 holds is that every match essentially
constitutes a graph homomorphism. We provide the detailed
proof in our technical report [19]. The nodes disqualified by
the largest dual simulation are irrelevant for any further query
processing, obeying the original SPARQL semantics.

Theorem 1 Let DB be a graph database, G a BGP and S
the largest dual simulation between G(G) and DB. For each
database node o ∈ ODB such that there are v ∈ vars(G) and
µ ∈ JGKDB with µ(v) = o, it holds that (v, o) ∈ S.

Unfortunately, the converse, i. e., irrelevant nodes for BGP
result sets are ruled out by the largest dual simulation, does
not hold in general. Consider the example graphs P and K
depicted in Fig. 4(a) and (b). The largest dual simulation
between P and K includes node p4 which is, however, not
belonging to any match for the respective BGP. The reason
why p4 must not be disqualified for variable/node v is that
nodes p1 and p3 distribute the obligations for simulating
variable/node w. Informally, p1 knows p4 via p2 and p3,
although p1 and p4 do not have a direct link to one another.

We compute the largest dual simulation by the largest
solution of the SOI constructed from G(G) (cf. Sect. III).
From Theorem 1 we learn the desirable property for systems
of inequalities E of any query Q, that we must not remove
nodes from the database important for any further processing
of matches. We call this property soundness of E w. r. t. Q.



Definition 2 Let DB be a graph database, Q a SPARQL
query and E any SOI representation of Q with solutions
S ⊆ vars(Q) × ODB. E is sound w. r. t. Q iff for the largest
solution S of E , it holds that if µ(v) = o for some v ∈ vars(Q)
and µ ∈ JQKDB, then (v, o) ∈ S. �

B. Advanced Graph Patterns

BGPs, and SPARQL queries in general, may be combined by
operators, further restricting and linking the sets of matches.
This subsection is devoted to applying dual simulation princi-
ples to queries with UNION- and AND-operators. The AND-
operator is best characterized by relational inner-joins of the
results of two queries.

The UNION-operator is the least invasive operator. It com-
bines any two queries Q1 and Q2 to query Q1 UNION Q2.
The result set is the union of the result sets of the constituent
queries, i. e., JQ1 UNION Q2KDB := JQ1KDB ∪ JQ2KDB. It
is well-known that any SPARQL query may be rewritten as
the union of finitely many union-free queries (cf. Proposi-
tion 3.8 [26]). A SPARQL queryQ is union-free if the UNION-
operator does not occur in Q. Instead of Q we may process
each union-free part of Q individually and later combine their
results. Henceforth, we assume every query to be union-free.

While SPARQL’s disjunction unifies the result sets of the
constituents, conjunction unifies compatible results, i. e., those
results agreeing upon shared variables. Matches µ1 and µ2 are
compatible, denoted µ1
µ2, if for all v ∈ dom(µ1)∩dom(µ2)
(v shared by µ1 and µ2), µ1(v) = µ2(v). The conjunction
of two queries Q1 and Q2 is the query Q1 AND Q2. As
an example, the SPARQL representation of the graph pattern
in Fig. 4(a) may be described as the conjunction of two
BGPs, G1 = {(v,knows, w)} and G2 = {(w,knows, v)}.
The semantics of conjunctions is defined by

JQ1 ANDQ2KDB := {µ1 ∪ µ2 | µi ∈ JQiKDB ∧ µ1 
 µ2}.
For example, in the database in Fig. 4(b), queries Gi from
above enjoy matches µi (i = 1, 2) with µ1(v) = µ2(v) = p1
and µ1(w) = µ2(w) = p2. These matches are compatible, thus
(µ1 ∪µ2) ∈ JG1 ANDG2KDB. In contrast, µ1 from before and
µ3 with µ3(w) = p2 and µ3(v) = p3 constitute incompatible
matches, thus (µ1 ∪ µ3) /∈ JG1 AND G2KDB.

Regarding our dual simulation process, for conjunctions
Q1 AND Q2, we create the systems of inequalities for Q1

and Q2 separately, denoted by E(Q1) and E(Q2). Recall
that the variables of both queries directly refer to variables
occurring in Q1 and Q2, respectively. The semantics of
conjunctions requires matches to queries Q1 and Q2 to be
compatible. In consequence, assignments to common variables
must be identical. This may be achieved by simply unifying the
systems of inequalities of both queries. The following lemma
defines the sound system of inequalities.

Lemma 3 Let DB be a graph database and Q1,Q2 queries
with sound systems of inequalities E(Q1) = (Var1, Eq1) and
E(Q2) = (Var2, Eq2). Then E = (Var1 ∪ Var2, Eq1 ∪ Eq2) is
sound for Q1 ANDQ2.

A proof can again be found in our technical report [19]. The
result itself is independent of the shape ofQ1 andQ2, allowing
them to also contain optional patterns, whose proper handling
we describe subsequently.

C. Optional Patterns

The last syntactic construct of SPARQL for which we
provide a sound dual simulation procedure is that of optional
patterns. While, in terms of complexity, it is the most involved
SPARQL operator [29], our procedure needs rather small
adjustments. Reconsider our introductory query (X1), where
we asked for directors and their coworkers. If we are not
sure whether every director has a person listed they worked
with, then we may put this information in an optional pattern,
yielding query (X2).

SELECT ∗ WHERE {
?director directed ?movie .
OPTIONAL {

?director worked_with ?coworker . } }

(X2)

Optional patterns are left-outer joins in the relational model,
i. e., matches to (X2) definitely assign nodes from the
database to variable ?director and ?movie, but to vari-
able ?coworker only if there is one. Regarding the graph
database in Fig. 1(a), we obtain all bold subgraphs, as before,
and additionally the semi-thick subgraphs (with D. Koepp
and T. Young as ?director). In general, for queries Q1

and Q2, the result set of Q1 ANDQ2 is contained in the result
set of the optional pattern Q1 OPTIONAL Q2. Additionally,
all matches to Q1 that have no compatible matches to Q2 are
matches, i. e.,
JQ1 OPTIONALQ2KDB := JQ1 ANDQ2KDB∪

{µ ∈ JQ1KDB |6 ∃µ′ ∈ JQ2KDB : µ
 µ′}.
In (X2), variable ?director occurs in two different roles.
First, the optional pattern mandates variable ?director to
feature triples with label directed. Second, triples labeled
worked_with are only optional. These two roles must be
reflected by our SOI representation of (X2) by including
two copies of that variable, ?directorm (mandatory) and
?directoro (optional) with the property that a solution
S in variable ?directoro must not exceed S in variable
?directorm. In other words, there is no database node
matching directoro that does not match ?directorm.
This is expressed by inequality

?directoro ≤ ?directorm. (13)

To faithfully describe such dependencies, we need to dis-
tinguish optional variable occurrences from mandatory ones,
based the formal query syntax.

The query language S comprises union-free SPARQL
queries with AND and OPTIONAL operators, as the following
grammar describes:

Q ::= G Q ANDQ Q OPTIONALQ

where G ranges over by BGPs. Queries in S range over
by Q,Q1,Q2, . . .. As observed above, we need to consider
mandatory and optional variable occurrences. Function mand



maps queries Q from S to the set of variables that occur as
mandatory in Q, defined by

1) mand(G) := vars(G),
2) mand(Q1 ANDQ2) := mand(Q1) ∪mand(Q2), and
3) mand(Q1 OPTIONALQ2) := mand(Q1).

For handling optional pattern Q1OPTIONALQ2 correctly, we
need to decide, in which cases an occurrence of variable v in
Q2 has an optional dependency to another occurrence of the
same variable. The case v ∈ vars(Q1) is reflected by query
(X2). Upon identification of such mandatory/optional pairs,
we rename the optional occurrences of variables in our SOI
and add an inequality as before, e. g., (13). More precisely,
for the special case of query Q = Q1 OPTIONAL Q2,
we create the SOI representation for Q by first identifying
mandatory/optional dependencies between Q1 and Q2, that
are occurrences of variables v ∈ vars(Q2) ∩mand(Q1). For
v ∈ vars(Q2) ∩ mand(Q1), we reserve a unique name vQ2

,
which we use to replace v in every inequality of Q2, achieved
by a renaming ρ := {(v, vQ2) | v ∈ vars(Q2) ∩mand(Q1)}.
Upon renaming, we add inequality

vQ2
≤ v (14)

for v ∈ vars(Q2)∩mand(Q1) to the overall SOI. The largest
solution to the resulting SOI consists of all assignments to
the new variables vQ2 , i. e., to variables not occurring in the
original formulation of the query. Since these variables are
only surrogates necessary for handling optionality correctly,
and the largest solution for these variables is subsumed by the
respective mandatory variables (cf. (14)), we may ignore them
in the final result of the pruning step.

Lemma 4 Let DB be a graph database and Q1,Q2 two
SPARQL queries with sound systems of inequalities E(Q1) =
(Var1, Eq1) and E(Q2) = (Var2, Eq2). Furthermore, define
renaming as ρ by ρ(v) := vQ2

for all v ∈ vars(Q2) ∩
mand(Q1). Then
E = (Var1 ∪ Var2 ∪ ρ(Var2), Eq1 ∪ ρ(Eq2) ∪ Eq0)

with Eq0 := {vQ2
≤ v | v ∈ vars(Q2)∩mand(Q1)} is sound

for Q1 OPTIONALQ2.

A more detailed description of variable dependencies in op-
tional patterns is included in the technical report [19]. What
if optional patterns occur within the clauses of a conjunction?
Let us consider another example:

({(v1, a, v2)} OPTIONAL {(v3, b, v2)}) AND {(v3, c, v4)}. (X3)

The query consists of three triple patterns, the first two
constitute an optional pattern and their results are joined with
the third triple pattern. Fig. 5(b) and (c) show possible matches
of (X3) w. r. t. the graph database in Fig. 5(a). Analogous
to (X2), we derive v2m and v2o with v2o ≤ v2m from the
optional pattern. The first occurrence of v3 is optional whilst
the second occurrence is a mandatory one. Matches to v3
have an outgoing c-labeled edge and may feature the b-labeled
edge from the optional pattern. Although both occurrences
are not directly linked in an optional pattern, the second
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Fig. 5: (a) Graph Database, (b) and (c) Matches of (X3)

occurrence restricts the possible assignments for the first one.
We make use of renamings based on a unique identification
of subqueries. If we abstract (X3) to Q1 AND Q2, then Q1

is R1 OPTIONAL R2. In the course of renaming, we replace
v3 in R2 by a fresh variable, e. g., v3R2 , and add inequality
v3
R2 ≤ v3 to the system of inequalities for (X3). Renaming

functions ρi (i = 1, 2) are defined accordingly to rename
variables that occur only optional in Qi but mandatory in the
other subquery Qj . The solution of the resulting system of
inequalities is interpreted as if all renamed variables are unified
with their originals. This interpretation allows us to maintain
correctness of lemmas 3 and 4 without cluttering the formal
notation of the results.

D. Discussion

Before we discuss an important query type, we conclude this
section by showing that the constructed systems of inequalities
are sound for any query Q ∈ S, using all the results we
obtained so far in the proof.

Theorem 2 (Soundness) Let DB be a graph database and
Q ∈ S . Then E(Q) is a sound SOI.

Our theoretical considerations are limited to SPARQL
queries in which every node of a triple pattern is a variable.
SPARQL also allows mentioning constants, i. e., objects and
literals from the database, often drastically reducing the num-
ber of possible results. The key to integrating constant nodes
into our pruning technique is to alter inequality (12).

Our dual simulation process is not restricted to well-
designed patterns. Well-designed patterns are SPARQL queries
Q with the property that for every sub-query Q1 OPTIONAL
Q2 and every v ∈ vars(Q2) that also occurs outside the
optional pattern also occurs in Q1, i. e., v ∈ vars(Q1) [26].
Query (X3) is not well-designed, since v3 occurs as an
optional variable but also outside the optional sub-pattern.
Non-well-designed patterns give rise to cross-product results,
as indicated by the match in Fig. 5(c). Assume that we have
several c-labeled edges, then each of these edges together
with the a-labeled edge forms an answer to the query. In
these situations, our procedure remains effective, since it
handles both occurrences of variable v3 separately. In fact,



the addition of AND and OPTIONAL operators does not
influence the complexity of our procedure. Considering dual
simulation as a query processor for S, PSPACE-completeness
of the evaluation problem [29] may be evaded, since checking
whether a given relation S constitutes a valid assignment to
E(Q) and extensions of it may be performed in PTIME. More
expressive fragments of SPARQL add combinatorial complex-
ity not solvable by pure dual simulation pattern matching.

V. EVALUATION

First, we compare our algorithm to the state-of-the-art dual
simulation algorithm as introduced by Ma et al. [18] and
used in implementations of [18], [23], [30] for evaluation
purposes. Both are implemented within our prototype called
SPARQLSIM. Second, we analyze how our SPARQL extension
of dual simulation may be used to effectively and efficiently
prune graph databases to improve query processing on an in-
memory RDF database and a triple store based on relational
database technology. After analyzing the effectiveness of the
pruning, we compare query evaluation times with two graph
database systems on two very large graph datasets compris-
ing 750 million and 1.3 billion triples. We focus on time-
consuming optional queries which were also used by Atre [4].
Details concerning the evaluation results, a list of queries, and
our implementation can be found on our project’s Github page.

A. Experimental Setup

For the first experiment, we have implemented the dual
simulation algorithm of Ma et al. as an option in our tool. To
evaluate our prototypes’ performance as a pruning mechanism,
we employed one of the fastest RDF databases Virtuoso [9]
and the high-performance in-memory database RDFox [24].
All experiments have been performed on a server running
Ubuntu 16.04 with four XEON E7-8837, 2.67 GHz, having 8
Cores each, 384 GB RAM and a Kingston DCP1000 NVMe
PCI-E SSD. We deactivated caching for Virtuoso to achieve
stable query evaluation times. RDFox is not using query
caches. For the evaluation, we have run all queries 10 times
on each database and averaged the times.

Since we provide a dual simulation algorithm that can be
used as an external pruning mechanism, we imported the result
sets from our tool into the two databases manually and then re-
evaluated the queries on the pruning in comparison to queries
on the full databases. Here, we did not consider the export time
from our tool and the import time into the database, because
our tool could easily be integrated into a standard database
system, using our computations internally.

Our evaluation data comprises two popular RDF datasets:
(1) The DBpedia dump 2016-10 in the English language
version [6] and (2) the synthetic Lehigh University Bench-
mark [14] (LUBM) dataset generated for 10,000 universities.
DBpedia comprises 751,603,507 triples with 216,132,665
nodes and 65,430 predicates. While the DBpedia queries D0-
D5 stem from [4], benchmark queries B0-B19 appeared in the
DBpedia benchmark dataset in [22]. The LUBM benchmark
dataset comprises 1,381,692,508 triples with 18 predicates

TABLE II: Runtimes of our SPARQLSIM for BGPs from
queries B0-B21 compared to Ma et al. [18].

Query tSPARQLSIM tMA ET AL. Query tSPARQLSIM tMA ET AL.

B0 0.10385 6.72121 B10 0.02397 0.27126
B1 0.03876 3.33471 B11 0.01392 0.02099
B2 0.79097 3.84781 B12 0.01477 0.02287
B3 0.69797 5.62662 B13 0.35515 11.30355
B4 0.00003 0.00004 B14 5.46599 16.63957
B5 0.04091 0.31700 B15 13.43710 24.99660
B6 0.41105 0.54291 B16 0.00002 0.00003
B7 0.26991 0.51206 B17 1.12649 2.30390
B8 0.13562 5.51084 B18 0.32056 0.54057
B9 0.02551 0.08707 B19 0.69515 5.15070

and 328,620,750 nodes. Since official query sets hardly cover
optional patterns, we rely on queries that have been used by
Atre [4] (cf. L0-L5).

The space our tool allocates for storing the adjacency matri-
ces sums up to 35 GB for LUBM and 23 GB for DBpedia. The
biggest matrices of LUBM consume between 1 GB and 4 GB
of main memory (11 out of 36, e. g.,rdf:type). 99% of the
DBpedia predicates allocate less than 1 MB. Constructing the
adjacency matrices and producing the result triples requires
additional space for storing maps and string objects.

B. Evaluation Analysis

a) Comparison of Dual Simulation Algorithms: Due to
the fact that Ma et al.’s algorithm [18] considers BGPs as
input we have removed the SPARQL keyword OPTIONAL
from benchmark queries B0-B19. Evaluation times are shown
in Table II. We observe that the optimizations allowed by
SPARQLSIM (cf. Sect. III-C) pay off, since we outperform Ma
et al.’s algorithm in every case, often even by an order of
magnitude. When running in graph database query scenarios,
it is this order of magnitude the naive algorithm lacks.

b) Dual Simulation as Pruning Mechanism: First, we
analyze SPARQLSIM’s pruning effectiveness (cf. Table III) of
dual simulation for all LUBM and DBpedia queries. Observe
that the number of triples is drastically decreased from the
original databases for all queries. Over all tested queries we
prune at least 95% of the original database. Hence, for most
DBpedia queries we prune all triples not required for any result
(compare req. triples and tripl. aft. pruning in Table III). In
comparison, the effectiveness of our pruning is smaller for
LUBM queries, being least effective for query L1. Later on
we provide evidence that, e. g., for L1, our pruning allows
the two database systems to enormously improve upon their
evaluation times.

Regarding efficiency, SPARQLSIM’s evaluation time heavily
depends on the query and the dataset. With LUBM, having
only 18 distinct predicates, we have an extreme case that often
needs over 30 iterations to compute the largest dual simulation,
which leads to high running times of our algorithm, e. g., for
L0 or L2. As an outstanding characteristic, these two queries
have a huge number of results. It is further a combination of
the cyclic shape of the queries and the low selectivity of the
predicates within the queries that explains the long runtime



TABLE III: Result set sizes, numbers of required triples,
runtimes of SPARQLSIM in seconds and numbers of triples
after pruning.

Query Result No. Req. Triples tSPARQLSIM Tripl. aft. Pruning

L0 10,448,905 3,276,841 106.451 10,181,730
L1 226,641 114,989 8.464 25,429,750
L2 32,828,280 15,416,012 147.335 48,674,046
L3 11 35 0.138 126
L4 10 33 0.125 101
L5 7 35 1.220 35

D0 523,066 3,139,273 4.396 3,141,102
D1 0 0 0.002 0
D2 12 60 0.088 60
D3 5794 28,704 0.143 28,704
D4 25,102,459 22,630,477 6.230 22,691,521
D5 365,693 79,943 0.574 79,944

B0 12 60 0.088 60
B1 859,751 726,749 0.022 726,812
B2 913,786 1,587,731 0.532 1,588,127
B3 438,542 386,000 0.606 386,020
B4 0 0 0.000 0
B5 0 0 0.033 0
B6 815,522 886,826 0.503 886,939
B7 34,991 37,965 0.443 37,965
B8 8416 30,258 0.113 30,258
B9 8247 13,116 0.022 13,116
B10 8061 12,642 0.027 12,642
B11 9849 8955 0.018 8955
B12 9554 8660 0.018 8660
B13 123,467 365,131 0.273 365,154
B14 22,673,220 27,652,055 4.322 27,747,192
B15 0 0 0.000 0
B16 2 4 0.009 4
B17 7,898,331 8,285,964 0.917 8,294,385
B18 66,903 41,808 0.472 41,808
B19 879,460 292,531 0.602 292,541

of our algorithm. In DBpedia, predicates usually have a much
higher selectivity. Hence, we usually perform the computation
for these queries in only a split-second.

c) Runtime of RDF Databases: By the next experiments
we compare the query evaluation time of the in-memory
database RDFox to SPARQLSIM in combination with RDFox
as a query processor. In Table IV, we observe an improvement
of the query time in 15 out of 32 queries. Especially the
improvement on query L1 with a query processing time of
25,900 seconds on RDFox is worth mentioning. We could run
our dual simulation algorithm in only 8 seconds (cf. Table III),
decreasing the query time of RDFox by more than 20 times.
For L0, however, tSPARQLSIM alone is around 5 times slower
than RDFox (tDB). Also, in queries D5, B0, B7-B9, B17, B21
we show good improvements of the in-memory databases’
evaluation times. For most of the remaining queries we show
comparable results to RDFox, varying by some milliseconds.

Table V shows an improvement of the running times of only
3 queries for Virtuoso. For most other queries, evaluation times
are on par with tDB. For some queries, our pruning could not
increase Virtuoso’s evaluation time as much as for RDFox. A
detailed analysis of Virtuoso’s query plans revealed that this
was due to changes in the join order that sometimes seems to
turn against optimal evaluation times by drastically increasing

TABLE IV: Query processing times on the full and pruned
dataset, and query times including pruning times for RDFox.
All times are measured in seconds.

Query tDB tDB pruned tDB pruned + tSPARQLSIM

L0 19.100 1.401 107.852
L1 25,900.000 888.000 896.464
L2 161.000 15.690 163.025
L3 0.000 0.000 0.138
L4 0.000 0.000 0.125
L5 0.000 0.000 1.223

D0 1.400 1.115 5.511
D1 0.000 0.000 0.002
D2 1.100 0.003 0.091
D3 0.620 0.002 0.145
D4 5.960 3.493 9.722
D5 3.230 0.016 0.590

B0 1.468 0.000 0.088
B1 0.099 0.030 0.052
B2 0.348 0.110 0.642
B3 0.104 0.012 0.618
B4 0.033 0.000 0.000
B5 0.000 0.000 0.033
B6 12.830 0.042 0.545
B7 14.410 0.002 0.445
B8 0.793 0.001 0.114
B9 0.117 0.001 0.023
B10 0.004 0.001 0.028
B11 0.001 0.000 0.018
B12 0.001 0.001 0.019
B13 0.643 0.022 0.295
B14 3.282 1.998 6.320
B15 0.941 0.000 0.000
B16 0.000 0.000 0.009
B17 0.758 0.310 1.227
B18 0.119 0.001 0.473
B19 18.750 0.048 0.650

the number of intermediate results, e. g., D4 with doubled
evaluation time tDB pruned on the 3% portion of DBpedia.
Nevertheless, we believe that Virtuoso could benefit from a
direct integration of SPARQLSIM as a pruning technique. In
turn, our tool may advance by employing Virtuoso’s built-
in heuristics for query evaluation plans. On the downside,
our algorithm is often slightly slower than the professionally
implemented and highly optimized RDF triple store. Some
of the more complex queries took longer to produce the
pruning than for Virtuoso to produce the actual answers. These
queries took several iterations in SPARQLSIM to compute. We
believe that we can benefit from more sophisticated join order
optimization techniques as used for example in Virtuoso which
could boost our computation times tremendously. The very
fast pruning time for the cyclic query L1 requires only two
iterations, and thereby points to the potential of our solution.

C. Discussion

The evaluation results suggest dual simulation pruning as
an effective technique allowing two state-of-the-art graph
database systems to improve upon their query evaluation times,
sometimes enormously. Preprocessing L1 is most profitable,
since huge intermediate tables can be avoided. In this case
we observe a decrease by more than one order of magnitude



TABLE V: Query processing times on the full and pruned
dataset, and query times including pruning times for Virtuoso.
All times are measured in seconds.

Query tDB tDB pruned tDB pruned + tSPARQLSIM

L0 5.126 2.261 108.712
L1 50.853 0.971 9.435
L2 56.676 26.767 174.102
L3 0.001 0.000 0.138
L4 0.000 0.000 0.125
L5 0.000 0.000 1.223

D0 0.395 0.359 4.755
D1 0.001 0.000 0.002
D2 0.002 0.000 0.089
D3 0.010 0.003 0.147
D4 2.148 4.008 10.238
D5 0.039 0.021 0.595

B0 0.002 0.000 0.088
B1 0.003 0.001 0.023
B2 0.003 0.003 0.030
B3 0.001 0.002 0.020
B4 0.001 0.002 0.020
B5 0.054 0.031 0.303
B6 1.082 0.441 4.762
B7 0.000 0.000 0.000
B8 0.000 0.000 0.009
B9 0.121 0.099 1.016
B10 0.043 0.009 0.031
B11 0.012 0.003 0.476
B12 0.102 0.056 0.658
B13 0.069 0.064 0.596
B14 0.000 0.000 0.000
B15 0.000 0.000 0.034
B16 0.042 0.026 0.594
B17 0.022 0.013 0.516
B18 0.003 0.001 0.444
B19 0.021 0.005 0.118

while the pruning time is vastly fast in only two iterations. In
contrast, because intermediate results in the evaluation of L0

are rather small, the benefits of dual simulation pruning are
not as significant as for L1. Furthermore, the low selectivity
predicates of L0 result in a rather big number of iterations that
increases the pruning time compared to e. g., L1. As a general
rule we recommend using dual simulation for pruning in cases
where queries produce large intermediate results. Such cases
can usually be detected employing database statistics for join
result size estimation, also used for join order optimization.
Our technical report [19] contains more details of L0 and L1.
Remarkably, the complexity of both queries may not be found
in the optional patterns but in their cyclic shape.

VI. RELATED WORK

Recently, graph pattern matching has become a trending
topic for graph databases, different from the canonical though
costly prime candidate of graph isomorphism, with the goal of
reducing structural requirements of the answer graphs. Espe-
cially, simulations have been implemented for different graph
database tasks [8], [10], [12], [23]. Ma et al. [18] introduce
the notion of dual simulation. Having a simulation preorder in
a database context considering forward and backward edges is
mentioned as early as in the year 2000 [1]. On the downside,

performance improvements by dual simulation come with a
loss of topology [18].

Mottin et al. [23] build on simulation as one solution to
their query paradigm called Exemplar Queries. For a given
exemplar graph pattern, the user obtains subgraphs from the
database similar to the exemplar. We foresee that exemplar
queries as well as other applications of graph pattern matching
may exhibit the portion of SPARQL integrated in our frame-
work, making their proposals even more attractive to users.

Using simulation for graph database pruning has been
proposed as a component in Panda [30]. In Panda, sub-
graph simulation is used to filter unnecessary tuples before
answering isomorphism queries. Their large-scale evaluation
shows improvements in query time compared to several other
isomorphism-based query processors. In contrast, we rely on
dual simulation being more effective in pruning unnecessary
triples, and we implement a fast dual simulation algorithm
operating on bit-matrices which are particularly useful for
large graph databases. Furthermore, we use a more expressive
query model that could also be integrated into their pruning
technique to support more complex queries. Other existing
approaches for optimizing graph database querying rely on
adapting traditional database optimization techniques, usually
leading to major improvements with regard to the query
performance [7], [9]. However, graph database queries usually
consist of numerous joins with oftentimes huge intermediate
results, requiring specialized optimization techniques. There-
fore, join order estimation for graph databases, especially RDF
triple stores, is still an active field [4], [17], [25], [29]. Our
proposal appreciates the graph data model and performs light-
weight algorithms to support traditional database optimization.

Simulation-based indexing techniques have already been
used for join-ahead pruning in databases on XML data [21].
The index is created by computing bisimulation equivalence
classes of nodes on the original database. Each equivalence
class groups structurally bisimilar nodes [27], [31]. Bisimu-
lation is more restrictive than dual simulation which we use
throughout this paper. However, our algorithm could benefit
from similar ideas. It would be sufficient to produce dual
simulation equivalence classes, which promises to obtain a
much smaller database fingerprint than possible with bisim-
ulations, since (dual) simulation equivalence is coarser than
bisimulation.

VII. CONCLUSION

We proposed efficient processing of SPARQL queries based
on graph pattern matching. Our algorithm builds upon dual
simulation and for all extensions, due to SPARQL, we pro-
vided soundness proofs. To derive an algorithm competing
with state-of-the-art graph databases we contribute an al-
ternative characterization of dual simulation in terms of a
system of inequalities. Dual simulation is directly applicable
to SPARQL’s BGPs, whereas composite queries including
AND and OPTIONAL operators, are handled by conservative
extensions of dual simulation.



We could show that our algorithm outperforms standard
dual simulation algorithms on a variety of real-world SPARQL
BGPs. Furthermore, our dual simulation algorithm can be used
to aggressively prune triples, speeding up graph database query
processing for state-of-the-art graph databases. In comparison
to these graph databases, we could improve the query eval-
uation time for several queries drastically and showed com-
parable results for the others. We believe that most database
systems would benefit from a direct integration of our proposal
into their query processor. Further applications already using
dual simulation may benefit from our SPARQL extension to
offer more expressive query capabilities.

We plan to extend our prototype by applying more heuristics
with which we conduct extensive experiments to find better
guidelines for the applicability of dual simulation pruning. Our
experiments with two state-of-the-art graph database systems
showed that such guidelines make sense on a per-system and
per-data basis. We are currently investigating the limits of our
dual simulation procedure w. r. t. different SPARQL fragments.
While this work suggests a tremendous enhancement of the
complexity of optional pattern evaluation, other operators add
combinatorial problems unavoidable for a dual simulation
evaluation semantics for SPARQL.
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